2019
DOI: 10.1051/e3sconf/201912523012
|View full text |Cite
|
Sign up to set email alerts
|

Ant Colony Algorithm for Determining Dynamic Travel Routes Based on Traffic Information from Twitter

Abstract: Combining the search method for fire suppression routes with ant colony algorithms and methods of analyzing twitter events on the highway is the basis of the problems to be studied. The results of the twitter data feature extraction are classified with Support Vector Machine after it is implemented in the Simple Additive Weighting method in calculating path weights with criteria of distance, congestion, multiple branching, and many holes. Line weights are also used as initial pheromone values. The C-means meth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
2
1

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 11 publications
0
1
0
1
Order By: Relevance
“…Pada beberapa kasus, keputusan yang kita buat di pengaruhi oleh opini atau pendapat dari orang lain yang sering dinamakan dengan analsis sentimen [3]. Analisis Sentimen merupakan cara untuk mengekstraksi pemikiran publik berdasarkan pada data dalam domain penelitian untuk menganalisis sudut pandang emosi, pikiran pendapat penulis tentang berbagai masalah [4].…”
Section: Pendahuluanunclassified
“…Pada beberapa kasus, keputusan yang kita buat di pengaruhi oleh opini atau pendapat dari orang lain yang sering dinamakan dengan analsis sentimen [3]. Analisis Sentimen merupakan cara untuk mengekstraksi pemikiran publik berdasarkan pada data dalam domain penelitian untuk menganalisis sudut pandang emosi, pikiran pendapat penulis tentang berbagai masalah [4].…”
Section: Pendahuluanunclassified
“…Based on previous research, there are several methods used for the extraction of social media features, such as the use of a decision tree to support a place recommendation decision based on the number of words per content on a particular label so that the C4.5 algorithm is 92% accurate [8]. Other studies regarding data accuracy using the Support Vector Machine (SVM) method to determine the level of congestion at a location using social media data resulted in an accuracy rate of 97% [9]. The results of this accuracy were obtained in manual labelling with two classes (+) and (-) so that when applied to unigram data with multilabel, the accuracy decreased to 74% in C4.5 and 83% in SVM [10].…”
Section: Introductionmentioning
confidence: 99%