The ACO (Ant Colony Optimization) algorithm is a bio-inspired metaheuristic used to optimize problems or functions described by graphs, sequences of events, or queues of tasks. It is used, among a variety of other purposes, when routing Internet network packets, determining the shortest routes between designated points (traveling salesman's problem), for the time and cost optimization of production, or setting public transport stops. In the article, the ACO algorithm was used to autonomously construct the optimal route for an unmanned aerial vehicle (UAV). The algorithm establishes the spatial orientation of the UAV, indicating the direction of its transition for each intermediate waypoint. The results of the simulations show the trajectory of the UAV depending on the selected weighting factors, determining the priority of avoiding detected hazards or choosing the shortest path. The quality of each variant is evaluated numerically by the calculated fitness function, the value of which is the sum of the costs of the transition to each intermediate route point. The effect of the algorithm is a set of executable trajectory variants, of which the one with the best fitness value is selected. Streszczenie. Algorytm ACO (ang. Ant Colony Optimization) jest bio-inspirowaną metaheurystyką, wykorzystywaną do optymalizacji problemów lub funkcji opisywanych za pomocą grafów, sekwencji zdarzeń, czy też kolejki zadań. Znajduje on zastosowanie m.in. przy trasowaniu pakietów sieci internetowych, wyznaczaniu najkrótszych tras między wyznaczonymi punktami (problem komiwojażera), optymalizacji czasu i kosztu produkcji, czy też ustalaniu przystanków transportu publicznego. W artykule, algorytm ACO został wykorzystany do autonomicznego wyznaczenia optymalnej trasy dla bezpilotowego statku powietrznego (BSP). Algorytm ustala orientację przestrzenną BSP, determinującą kierunek jego przemieszczenia dla każdego pośredniego punktu docelowego. Wyniki przeprowadzonych symulacji przedstawiają trajektorię BSP w zależności od dobranych współczynników wagowych, określających priorytet ominięcia wykrytych zagrożeń lub wybrania najkrótszej drogi. Jakość każdego wariantu jest określana liczbowo poprzez ustaloną funkcję dopasowania, której wartość stanowi suma kosztów przejścia do każdego pośredniego punktu trasy. Efektem działania algorytmu jest zbiór wykonywalnych wariantów trajektorii, z których wybrany zostaje ten o najlepszej wartości dopasowania [Zastosowaniealgorytmu ACO do wyznaczania trasy BSP]