By ordering test cases, early fault detection is focused on test case prioritization. In this field, it is widely known that algorithm and coverage criteria focused works are common. Previous works, which are related to test case prioritization, showed that practitioners need a novel method that optimizes test cases according to the cost of each test case instead of regarding the total cost of a test suite. In this work, by utilizing local and global search properties of a bat algorithm, a new bat-inspired test cases prioritization algorithm (BITCP) is proposed. In order to develop BITCP, test case execution time and the number of faults were adapted to the distance from the prey and loudness, respectively. The proposed method is then compared with four methods which are commonly used in this field. According to the results of the experiment, BITCP is superior to the conventional methods. In addition, as the complexity of the code of test cases increases, the decline in average percentage of fault detection is less in BITCP than the other four comparison algorithms produced.