In early spring, red wood ants Formica polyctena are often observed clustering on the nest surface in large numbers basking in the sun. It has been hypothesized that sun-basking behaviour may contribute to nest heating because of both heat carriage into the nest by sun-basking workers, and catabolic heat production from the mobilization of the workers’ lipid reserves. We investigated sun-basking behaviour in laboratory colonies of F. polyctena exposed to an artificial heat source. Observations on identified individuals revealed that not all ants bask in the sun. Sun-basking and non-sun-basking workers did not differ in body size nor in respiration rates. The number of sun-basking ants and the number of their visits to the hot spot depended on the temperature of both the air and the hot spot. To investigate whether sun basking leads to a physiological activation linked with increased lipolysis, we measured respiration rates of individual workers as a function of temperature, and compared respiration rates of sun-basking workers before and two days after they were allowed to expose themselves to a heat source over 10 days, at self-determined intervals. As expected for ectothermic animals, respiration rates increased with increasing temperatures in the range 5 to 35°C. However, the respiration rates of sun-basking workers measured two days after a long-term exposure to the heat source were similar to those before sun basking, providing no evidence for a sustained increase of the basal metabolic rates after prolonged sun basking. Based on our measurements, we argue that self-heating of the nest mound in early spring has therefore to rely on alternative heat sources, and speculate that physical transport of heat in the ant bodies may have a significant effect.