SummaryCrustaceans possess two pairs of prominent, movable sense organs on the rostral aspect of their bodies termed antennae: (1) a relatively short, usually bifurcate pair, the 1st antennae, also referred to as antennules, and (2) a much longer, uniramous pair, the 2nd antennae, or just ʻantennaeʼ. The antennules are equipped with diverse arrays of six or more types of cuticular setae, most of which are believed to have a sensory function. Axons from these structures course within the antennular nerve to the deutocerebrum, a large middle brain region that is known to receive chemoreceptor and mechanoreceptor inputs. In crayfish, axons from two kinds of single sensory-function setae, the olfactory receptor aesthetasc sensilla and as yet unidentified hydrodynamic sensilla, on the lateral antennular flagellum terminate, respectively, within the ipsilateral olfactory lobe and the lateral antennular neuropil of the deutocerebrum, where their activity generates synaptic potentials in local interneurons having dendritic fields that span both of those regions. It has been suggested that the short-latency hydrodynamic input gates or otherwise supplements the olfactory input signals. Much less is known about the functional capabilities of the other sensillar types on the antennular flagella, including the bimodal sensilla: how their inputs are distributed to the various neuropils of the deutocerebrum, whether they target common or separate brain neurons, and the nature, if any, of their functional relationships to the aesthetasc and hydrodynamic sensilla. Integrated processing of chemical and hydrodynamic signals undoubtedly plays an important role in locating odorant sources, perhaps by detecting boundaries of odorant plumes (tropotactic discrimination); other less-plausible strategies include time averaging of turbulent odorant signals and determination of concentration slopes within turbulence-generated odorant patches. These gaps in our understanding present important, but surmountable, experimental challenges for the future.