Like most neural systems, dopamine neurons of the substantia nigra undergo apoptotic natural cell death during development. In rodents, this occurs largely postnatally and is biphasic with an initial major peak just after birth and a second minor peak on postnatal day 14. As envisioned by classic neurotrophic theory, this event is regulated by interactions with the target of these neurons, the striatum, because a developmental target lesion results in an augmented natural cell death event with fewer nigral dopamine neurons surviving into adulthood. Until recently, the striatal target-derived neurotrophic factors providing developmental support of dopamine neurons were unknown, but there is now growing evidence that glial-cell-line-derived neurotrophic factor (GDNF) serves as a physiologic limiting neurotrophic factor for these neurons during the first phase of natural cell death. During this phase, intrastriatal injection of GDNF diminishes the natural cell death event and neutralizing antibodies augment it. Sustained overexpression of GDNF in the striatum throughout development in a unique double transgenic mouse model results in an increased number of dopamine neurons surviving the first phase of natural cell death. However, this increase does not persist into adulthood. Therefore, other factors or mechanisms must play important roles in the determination of the mature number of nigral dopamine neurons. Further elucidation of these mechanisms will be important in the development of neuroprotective and cell replacement therapies for Parkinson's disease.