Abstract. Aerosols play a crucial role in climate through different feedback mechanisms, affecting radiation, clouds and air column stability. This study focuses on the altitude-dependence of the cloud mediated indirect effects of aerosols in the Great Alpine Region (GAR), an area characterised by high pollution levels from anthropic activities in the Po Valley and a complex orography with the highest mountains in Europe. Using a regional atmospheric model, 5-years long convective-permitting sensitivity experiments have been run with different surface aerosol fluxes. The results show that seasonal mean cloud cover, temperature, and precipitations are affected by the aerosol concentrations in the air column, and that the response to pollution is both elevation and season dependent. The overall cloud cover increase with aerosol levels leads to either surface cooling or warming depending on the surface albedo (snow covered or not). Furthermore, different types of clouds have a different sensitivity to aerosols: while the lifetime of low pressure system clouds and orographic clouds is generally increased at high levels of aerosols, convective clouds (typical of the summer season) can actually decrease at high levels of pollution, due to the reduction of strong updrafts.