Trace element pollution derived from human activities in aquatic systems has raised widespread concerns due to its toxicity, persistence, and bioaccumulation. In this article, we presented a systematic investigation of the anthropogenic overprints on trace elements geochemistry in three streams of the human-impacted (agriculture, urban area, and abandoned mining), located at Lake Aha, Guiyang, Southwest China. Concentrations reported in the study demonstrated that the abandoned mining stream showed the highest trace elements (608.16 μg/L), followed by the urban stream (566.11 μg/L) and agricultural stream (457.51 μg/L). Nonmetric multidimensional scaling (NMDS), used to display sampling dates and trace elements, showed discernible temporal variation in trace element concentrations. Trace element concentrations in months (May, September, and October) with less rainfall were higher than in June, July, and August indicated by NMDS. Principal component analysis (PCA) had shown that As, Ba, Mo, and Zn were mainly impacted by the urbanized streams, and Fe and Sr influenced by the mine. Risk assessment of human beings to trace elements demonstrated that As may pose a detrimental health risk. The research found that trace elements were potential tracers for the presence of human activities and environmental changes.