“…Thus, and although little is known so far, the proved effect of relaxin on regulating endothelial function suggests that relaxin could also ameliorate the inflammatory response in the vascular system under pathological conditions, and this opens a promising new field of study of relaxin regarding its potential role as a regulator of cardiovascular inflammation. In fact, in human endothelium and vascular smooth muscle cells, relaxin was already proved as a potent inhibitor of early vascular inflammation, decreasing the expression of endothelial adhesion molecules, cytokine expression and suppressing monocyte adhesion to the endothelium (Brecht et al, 2011 ), a result also observed in vivo in female apolipoprotein E-deficient mice fed with a high-fat and cholesterol-rich diet for 6 weeks, in which relaxin treatment for the last 4 weeks reduced vascular oxidative stress, improved endothelium-dependent vasodilatation, reduced the development of the atherosclerotic plaque, decreased circulating concentrations of the cytokines interleukin (IL)-6 and IL-10, and down-regulated the angiotensin II type 1a receptor in the aorta, but in this study authors did not find differences in vascular macrophage, T-cell or neutrophil infiltration, nor in collagen/vascular smooth muscle cell content between relaxin treated and control mice (Tiyerili et al, 2016 ).…”