Kenya’s vision 2030 partly aims at ensuring adequate health care for all, and the integration of traditional healthcare practices into the national healthcare system would present a more rapid alternative towards the realization of universal health coverage in Kenya. Currently, research on Kenyan medicinal plants with potential antibacterial activity remains vastly fragmented across numerous literature studies and databases; thus, it is imperative to collate and appraise these data for the ease of future research and possible clinical application. Objective. This review aims at exploring and compiling research evidence on medicinal plants used in the management of bacterial infections in Kenya, with a focus on their efficacy and safety. Methodology. A comprehensive web-based systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was executed to highlight the Kenyan medicinal plants used for the management of bacterial infections in Kenya. This review includes studies published until January 2021 from the PubMed, Science Direct, AJOL, and Google Scholar databases. Results. A total of 105 Kenyan medicinal plants belonging to 43 families have their in vitro activity against various human pathogenic bacteria evaluated. Plants from the Lamiaceae, Rutaceae, and Fabaceae families were the most commonly studied. Aloe secundiflora, Toddalia asiatica, Senna didymobotrya, Warbugia ugandensis, Tithonia diversifolia, Fuerstia africana, Olea africana, and Harrisonia abyssinica were the plants frequently evaluated within Kenya. The plants with the strongest antimicrobial activities were Toddalia asiatica, Hagenia abyssinica, Ocimum gratissimum, Harrisonia abyssinica, Senna didymobotrya, Olea Africana, Camellia sinensis, and Tarmarindus indica. Conclusion. Based on a published work, it is evident that traditional medicine is seemingly an acceptable and efficient system among Kenyan communities in the management of bacterial infections. Kenya’s rich biodiversity with diverse secondary metabolites presents a promising source of new therapeutic alternatives with possibly different mechanisms of action against bacteria.