Increasing research interests have been paid to developing efficient multifunctional material systems (MFMS) by using various composite materials, owing to their useful properties and good stability. Here, we systematically studied 1-naphthols, especially how the type and position of a substituent influence the reactivity and properties, using different electron-directing groups. During computations, important preparation guidelines for thiol derivatives of 1-naphthol were obtained. It is very interesting to note that some molecules could exhibit intramolecular O–H–O interactions. Careful theoretical investigation reveals that all the tested compounds are stable and the molecules with substituents in positions 4 and 8 are the least reactive. It is also worth noting that for the stability and polarizability tensor values, it is more favorable when both substituents are in the same benzene ring. Among tested 1-naphthols, the greatest values of alpha, beta, and gamma are more than 5, 60, and 110 times better respectively, than in the urea molecule; the change of electron-withdrawing group (EWG) to electron-donating group (EDG) increases NLO effects. This study provided a new scope of 1-naphthols applicability by using them as anti-corrosion materials and as very good materials for NLO devices due to the high stability of the aromatic structure coupled with polarity given by the substituents. Also, the understanding of IR vibrations for more complex organic compounds with thiol substituent has been improved.