BackgroundLet-7 miRNAs are reported to play an inhibitory role in carcinogenesis, tumor progression, recurrence, and pluripotency of cancer. However, few studies have reported the relationship between let-7 and drug sensitivity, especially for let-7a (a subtype of let-7). This study aimed to investigate the function of let-7a in regulating the sensitivity of hepatocellular carcinoma (HCC) cell lines to cetuximab.MethodsThe cytotoxicity of cetuximab on HCC cell lines (Huh7, Hep3B, HepG2, SNU449, and SNU387) was evaluated using a cell viability assay (the Cell Counting Kit-8 assay) and a cell proliferation assay (the Click-iT EdU Imaging Kit) in the presence of a control, a let-7a mimic, and a let-7a inhibitor. Small interfering RNA to knockdown the expression of signal transducer and activator of transcription 3 (STAT3) were employed. Protein and mRNA expression levels were determined using quantitative polymerase chain reaction and Western blot analysis.ResultsIt was found that let-7a enhances the sensitivity of HCC cells with an epithelial phenotype (Huh7, Hep3B, and HepG2) to cetuximab, but has no effect on cells with the mesenchymal phenotype (SNU449 and SNU387). It was determined that STAT3 was a target mRNA of let-7a using TargetScan. Expression of STAT3 and let-7a mRNA were negatively correlated in HCC cell lines. Moreover, let-7a altered the protein and mRNA expression of STAT3. Furthermore, STAT3 knockdown enhanced the function of cetuximab on HCC cell lines with epithelial phenotypes, but not on HCC cell lines with mesenchymal phenotypes. Finally, a rescue experiment confirmed that let-7a affected the sensitivity of HCC cell lines to cetuximab by interacting with STAT3.ConclusionsThere is a functional link between let-7a and STAT3 in enhancing the sensitivity of HCC cells with an epithelial phenotype to cetuximab. Our results provide novel insight into new methodologies for combating HCC drug resistance.