Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Epilepsy is a prevalent neurological disorder, prompting an ongoing quest for new therapeutic agents. Sinapis alba, commonly known as yellow mustard, has garnered interest for its potential medicinal properties. This study aimed to assess the anti-convulsant potential of Sinapis alba in rats. Methods: Wistar albino rats were categorized into 5 distinct experimental groups (six each) : a normal control, a disease control, a group administered Sinapis alba seed oil (200mg/kg body weight), another given sodium valproate (300mg/kg body weight), and a combination group receiving both Sinapis alba seed oil and sodium valproate (150mg/kg body weight each). Antioxidant markers were subsequently extracted from the brain samples, and cresyl violet staining was employed to discern pathological changes. Results: The findings revealed a significant diminution in the durations of flexion, clonic convulsion, and stupor in the test, standard, and combination groups in contrast with the disease control. Additionally, the duration of tonic hind limb extension (THLE) noted a substantial decrease in the Sinapis alba group, sodium valproate group, and combination group. Moreover, the administration of Sinapis alba seed oil led to an elevation in antioxidant levels and a concomitant reduction in lipid peroxide levels. Intriguingly, a synergistic effect on generalized tonic-clonic seizures was observed upon integrating mustard oil with sodium valproate. Conclusion: Our research suggests that Sinapis alba seed extract demonstrates promising anti-epileptic properties and stands as a potential supplementary drug for managing generalized tonic-clonic seizures.
Background: Epilepsy is a prevalent neurological disorder, prompting an ongoing quest for new therapeutic agents. Sinapis alba, commonly known as yellow mustard, has garnered interest for its potential medicinal properties. This study aimed to assess the anti-convulsant potential of Sinapis alba in rats. Methods: Wistar albino rats were categorized into 5 distinct experimental groups (six each) : a normal control, a disease control, a group administered Sinapis alba seed oil (200mg/kg body weight), another given sodium valproate (300mg/kg body weight), and a combination group receiving both Sinapis alba seed oil and sodium valproate (150mg/kg body weight each). Antioxidant markers were subsequently extracted from the brain samples, and cresyl violet staining was employed to discern pathological changes. Results: The findings revealed a significant diminution in the durations of flexion, clonic convulsion, and stupor in the test, standard, and combination groups in contrast with the disease control. Additionally, the duration of tonic hind limb extension (THLE) noted a substantial decrease in the Sinapis alba group, sodium valproate group, and combination group. Moreover, the administration of Sinapis alba seed oil led to an elevation in antioxidant levels and a concomitant reduction in lipid peroxide levels. Intriguingly, a synergistic effect on generalized tonic-clonic seizures was observed upon integrating mustard oil with sodium valproate. Conclusion: Our research suggests that Sinapis alba seed extract demonstrates promising anti-epileptic properties and stands as a potential supplementary drug for managing generalized tonic-clonic seizures.
The aim of the study was to determine the effect of low doses of cardiac glycoside digoxin on the anticonvulsant effect of five classical antiepileptic drugs, sodium valproate, topiramate, levetiracetam, clonazepam and phenobarbital, under experimental seizures in mice. Antiepileptic drugs were administered 30 min before to seizure induction once intragastrically at conditionally effective (ED50) and sub-effective (½ ED50) doses: sodium valproate and topiramate – at doses of 300 and 150 mg/kg; levetiracetam – at doses of 100 and 50 mg/kg; phenobarbital – at doses of 20 and 10 mg/kg; clonazepam – at doses of 0.1 and 0.05 mg/kg body weight. Digoxin was administered once subcutaneously at a dose of 0.8 mg/kg body weight (1/10 LD50) 10-15 min before seizure induction. Maximal electroshock seizure model was reproduced by transmitting an electric current (strength – 50 mA, frequency – 50 Hz) through the corneal electrodes for 0.2 sec. It was found that low-dose digoxin potentiates the anticonvulsant effects of sodium valproate, topiramate and phenobarbital as well as modulates the effects of levetiracetam and clonazepam, showing a distinct pharmacological effect of their sub-effective doses and increasing their therapeutic potential even under incomplete seizure control – the equivalent of drug-resistant epilepsy. The obtained results substantiate the expediency of further study of digoxin as an anticonvulsant drug in the adjuvant therapy of epilepsy and other seizure conditions.
Aim: In the present study, Carica papaya seeds ethanol extract on the memory impairment and enhancing activity in zebrafish is studied using Rivastigmine as the standard drug and Okadaic acid as the memory impairing agent. Methods: Zebrafishes were procured from Marine institute Bangalore. The Alzheimer’s properties of Carica papaya seeds were evaluated. The fresh seeds were isolated and air-dried before pulverized to a course powder with and electric grinder. Extraction were carried out with 70% ethanol by Soxhlet apparatus. Preliminary phytochemical screening of the extract was investigated in this study. Two doses of herbal extract of Carica papaya seeds (50 and 100mg/kg) were used in this study. Whereas Rivastigmine as a standard drug and Okadaic acid were used as to induce memory impairment. Two behavioural tests namely, Colour-Biased Appetite Conditioning T-Maze test and light/dark chamber test. Histopathological studies of brain were also performed. Detection of estimation of cholinergic neurotransmitter acetylcholinesterase (AchE) using Enzyme-linked immunosorbent assay. Results: The extract contains phytochemicals, including alkaloids, flavonoids, glycosides, steroids, saponins and terpenoids. For the, zebrafish that received Carica papaya seeds extract at doses of 100mg/kg had significantly increased time spent and total number of entries into the green arm and decreased in red arm in T-maze and had significantly increased in time spent and total number of entries into the light chamber and decreased in dark chamber in light/dark chamber respectively. The amount of acetylcholinesterase was found to be more in the negative control (Okadiac acid) and low dose (50mg/kg) Carica papaya seeds extract. A significant purkinje cells were also observed from the histological study after treatment with Carica papaya seeds extract. Nucleus elongation of oligodendrocytes from zebrafish model of AD induced with Okadaic acid were improved when treated with the Carica papaya seeds extract. The results of the present study contribute to the ability ofCarica papaya seeds extract in ameliorating the memory impairment effects of Okadaic and can be used as a potential drug for neurodegenerative diseases like Alzheimer’s Disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.