Hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are a major threat worldwide. Combination therapy of interferon-α and ribavirin is currently the treatment of choice for HCV-infected patients. However, this regimen is only effective in approximately 50% of patients and provokes severe side-effects. Numerous natural alternatives for treating HCV have been suggested. Deoxynojirimycin and its derivatives are iminosugars which exert anti-HCV activity by inhibiting α-glucosidases. A non-immunosuppressive derivate of cyclosporine A, NIM811, exerts anti-HCV activity by binding to cyclophilin. Other natural products with promising anti-HCV activity are 2-arylbenzofuran derivatives, Mellein, and pseudoguaianolides. For HBV treatment, several drugs are available, specifically targeting the virus polymerase (lamivudine, entecavir, telbivudine, and adefovir dipivoxil). The efficacy of these drugs is hampered by the development of resistance due to point mutations in the HBV polymerase. Due to drug resistance and adverse side-effects, the search for novel drugs is mandatory. Wogonin, ellagic acid, artemisinin and artesunate, chrysophanol 8-O-β-D-glucoside, saikosaponin C, and protostane triterpenes are active against HBV. Natural products need to be investigated in more detail to explore their potential as novel adjuncts to established HBV or HCV therapy.