Contents 1. Introduction 2. The complex case 3. Deligne modules 4. q-inversive elements 5. Q-isogeny classes 6. Q-isogeny classes within a Q isogeny class 7. Isomorphism classes within a Q-isogeny class 8. Counting lattices 9. The Tate and Dieudonné modules 10. Polarization of the Dieudonné module 11. Real structures on the Dieudonné module 12. Basis of the Dieudonné module 13. Lattices in the Dieudonné module 14. The counting formula 15. Further questions Appendix A. Weil polynomials and a real counterpart Appendix B. Symplectic group Appendix C. Polarizations and positivity Appendix D. Involutions on the symplectic group Appendix E. Symplectic cohomology Appendix F. Finiteness Appendix G. Proof of Proposition 9.2 Appendix H. Involutions on the Witt vectors References