A series of thirty-one new compounds were synthesized and evaluated for their anti-HIV-1 and cytotoxicity activity. Of these, twelve were found to be inhibitors of HIV replications in primary human lymphocytes with median effective concentration (EC 50 ) values < 20 μM. However, most of the compounds demonstrated cytotoxicity in different cells. Our structure activity relationship study identified different patterns. In the series of 2-aryl pyrrolidines, comparing the activity of the compounds containing 2-aryl substituents we observed that compounds 1c, 1f-j, 2f,g with benzyloxyphenyl and isopropoxy groups were more potent. Compounds 1g-j, 2f,g, in which the 1 aryl moiety contained a methyl group in 3,5-or 4-positions also showed high activity. In the series of compounds containing the amide, aminomethyl and nitrile groups we observed an increase in activity with C(O)NH 2 < CH 2 NH 2 < CN. In the series of 2-pyrimidinyl pyrrolidines, the best results were demonstrated with derivatives 5e and 5f, in which the presence of a benzyl fragment in 1st and aniline fragment in 6th positions of pyrimidine ring we observed an increase in anti-HIV activity. Molecular docking studies of synthesized compounds with HIV-1 reverse transcriptase enzyme were performed. Binding energies of ligands were estimated, and the interacting amino acids of HIV-1 reverse transcriptase protein were shown. Based on corroborative results of the molecular docking studies and in vitro experiments, we suggest that three groups of synthesized ligands (1c, 1f-i), (2f,g), (5e,f, 7) are of high interest for further research on new drugs against HIV.