Medicinal plants have played an essential role in the treatment of various diseases. Thymus vulgaris, a medicinal plant, has been extensively used for biological and pharmaceutical potential. The current study was performed to check the biopotential of active biological compounds. The GC-MS analysis identified 31 compounds in methanolic crude extract, among which thymol, carvacrol, p-cymene, and eugenol are the main phytoconstituents present in T. vulgaris. The HPLC analysis quantified that flavonoids and phenolic acids are present in a good concentration in the active fraction of ethyl acetate and n-butanol. FTIR confirmed the presence of functional groups such as phenols, a carboxylic group, hydroxy group, alcohols, and a benzene ring. Among both fractions, ethyl acetate showed high antioxidant activity in the DPPH (84.1 0.88) and ABTS (87.1 0.89) assays, respectively. The anti-inflammatory activity of the fractions was done in vitro and in vivo by using a carrageenan-induced paw edema assay, while the hexane-based extract showed high anti-inflammatory activity (57.1 0.54) in a dose-response manner. Furthermore, the lead compound responsible for inhibition in the denaturation of proteins is thymol, which exhibits the highest binding affinity with COX1 (−6.4 KJ/mol) and COX2 (−6.3 KJ/mol) inflammatory proteins. The hepatotoxicity analysis showed that plant-based phytoconstituents are safe to use and have no toxicity, with no necrosis, fibrosis, and vacuolar degeneration, even at a high concentration of 800 mg/kg body weight. Furthermore, the in silico analysis of HPLC phytochemical compounds against gastric cancer genes showed that chlorogenic acid exhibited anticancer activity and showed good drug-designing characteristics. Thrombolysis and hemolysis are the major concerns of individuals suffering from gastric cancer. However, the T. vulgaris fractions showed thrombolysis from 17.6 to 5.4%; similarly, hemolysis ranged from 9.73 to 7.1% at a concentration of 12 mg/mL. The phytoconstituents present in T. vulgaris have the potential for multiple pharmacological applications. This should be further investigated to isolate bioactive compounds that can be used for the treatment of different ailments.