This study attempts to identify and assess a novel marine-derived antibiofilm agent. The antibacterial activity of n-hexane, dichloromethane, ethyl acetate, and butanol fractions from the crude extract of soft coral Nephthea sp. was evaluated against six microorganisms. As the ethyl acetate fraction was most effective against Bacillus subtilis, Escherichia coli, and Candida, investigated potential biofilm inhibition against the tested strains. Seventeen secondary metabolites were identified using (UPLC-Q/TOF-MS) responsible for these biological activities of the active fraction. Additionally, a molecular docking study was done and showed free binding energy of -7.5 kcal/mol; Azamial A had the highest binding affinity for the DNA gyrase enzyme, while Sinularectin had -8.3 and -7.6 kcal/mol for the DHFR and HSP90 enzymes, respectively. Moreover, pharmacokinetics and (ADME) studies for Azamia9l A and Sinularectin