Several lichen species have been used traditionally as medicinal plants. It has previously been shown that two low-molecular-weight lichen metabolites, lobaric acid isolated from Stereocaulon alpinum Laur. and protolichesterinic acid isolated from Cetraria islandica L. (Ach.), have in-vitro inhibitory effects on arachidonate 5-lipoxygenase. We have studied the effects of these compounds on cultured cells from man, including three malignant cell-lines (T-47D and ZR-75-1 from breast carcinomas and K-562 from erythro-leukaemia), as well as normal skin fibroblasts and peripheral blood lymphocytes. Both test substances caused a significant reduction in DNA synthesis, as measured by thymidine uptake, in all three malignant cell-lines; the dose inducing 50% of maximum inhibition (ED50) was between 1.1 and 24.6 microg mL(-1) for protolichesterinic acid and between 14.5 and 44.7 microg mL(-1) for lobaric acid. The breast-cancer cell-lines were more sensitive than K-562. The proliferative response of mitogen-stimulated lymphocytes was inhibited with a mean ED50 of 8.4 microg mL(-1) and 24.5 microg mL(-1) for protolichesterinic acid and lobaric acid, respectively. These concentrations are of the same order of magnitude as the IC50 values in the 5-lipoxygenase assay. Significant cell death (assessed by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-( 4-sulfophenyl)-2H-tetrazolium) assay and trypan blue exclusion) occurred in the three malignant cell-lines at protolichesterinic acid and lobaric acid concentrations above 20 and 30 microg mL(-1), respectively. In K-562 morphological changes consistent with apoptosis were detected. Up to 38% cell death was observed at 20 microg mL(-1) for protolichesterinic acid and 15 microg mL(-1) for lobaric acid in mitogen-stimulated lymphocytes but unstimulated lymphocytes were clearly less sensitive. In contrast, the DNA synthesis, proliferation and survival of normal skin fibroblasts were not affected at doses up to 20 microg mL(-1) for protolichesterinic acid and 30 microg mL(-1) for lobaric acid. We conclude that the anti-proliferative and cytotoxic effects observed might be related to the 5-lipoxygenase inhibitory activity of protolichesterinic acid and lobaric acid. These results open up the opportunity for future studies of these lichen metabolites with regard to their anti-tumour and anti-inflammatory properties.