Abstract:In this paper arithmetic progressions on the integers and the integers modulo n are extended to graphs. This allows for the definition of the anti-van der Waerden number of a graph. Much of the focus of this paper is on 3-term arithmetic progressions for which general bounds are obtained based on the radius and diameter of a graph. The general bounds are improved for trees and Cartesian products and exact values are determined for some classes of graphs. Larger k-term arithmetic progressions are considered and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.