Significant advancement in the field of nanotechnology has raised the possibility of applying potent engineered biocompatible nanomaterials within biological systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility, corrosion resistance, and low toxicity, titania nanomaterials have revolutionized therapeutic approaches. Additionally, titania provides an exceptional choice for developing innovative medical devices and the integration of functional moieties that can modulate the biological responses. Thus, the current review aims to present a comprehensive and up-to-date overview of TiO2-based nanotherapeutics and the corresponding future challenges.