Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Due to the severity of infections caused by P. aeruginosa and the limitations in treatment, it is necessary to find new therapeutic alternatives. Thus, the use of silver nanoparticles (AgNPs) is a viable alternative because of their potential actions in the combat of microorganisms, showing efficacy against Gram-positive and Gram-negative bacteria, including multidrug-resistant microorganisms (MDR). In this sense, the aim of this work was to conduct a literature review related to the antibacterial and antibiofilm activity of AgNPs against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. The AgNPs are promising for future applications, which may match the clinical need for effective antibiotic therapy. The size of AgNPs is a crucial element to determine the therapeutic activity of nanoparticles, since smaller particles present a larger surface area of contact with the microorganism, affecting their vital functioning. AgNPs adhere to the cytoplasmic membrane and cell wall of microorganisms, causing disruption, penetrating the cell, interacting with cellular structures and biomolecules, and inducing the generation of reactive oxygen species and free radicals. Studies describe the antimicrobial activity of AgNPs at minimum inhibitory concentration (MIC) between 1 and 200 μg/mL against susceptible and MDR P. aeruginosa strains. These studies have also shown antibiofilm activity through disruption of biofilm structure, and oxidative stress, inhibiting biofilm growth at concentrations between 1 and 600 μg/mL of AgNPs. This study evidences the advance of AgNPs as an antibacterial and antibiofilm agent against Pseudomonas aeruginosa strains, demonstrating to be an extremely promising approach to the development of new antimicrobial systems.
Due to the severity of infections caused by P. aeruginosa and the limitations in treatment, it is necessary to find new therapeutic alternatives. Thus, the use of silver nanoparticles (AgNPs) is a viable alternative because of their potential actions in the combat of microorganisms, showing efficacy against Gram-positive and Gram-negative bacteria, including multidrug-resistant microorganisms (MDR). In this sense, the aim of this work was to conduct a literature review related to the antibacterial and antibiofilm activity of AgNPs against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. The AgNPs are promising for future applications, which may match the clinical need for effective antibiotic therapy. The size of AgNPs is a crucial element to determine the therapeutic activity of nanoparticles, since smaller particles present a larger surface area of contact with the microorganism, affecting their vital functioning. AgNPs adhere to the cytoplasmic membrane and cell wall of microorganisms, causing disruption, penetrating the cell, interacting with cellular structures and biomolecules, and inducing the generation of reactive oxygen species and free radicals. Studies describe the antimicrobial activity of AgNPs at minimum inhibitory concentration (MIC) between 1 and 200 μg/mL against susceptible and MDR P. aeruginosa strains. These studies have also shown antibiofilm activity through disruption of biofilm structure, and oxidative stress, inhibiting biofilm growth at concentrations between 1 and 600 μg/mL of AgNPs. This study evidences the advance of AgNPs as an antibacterial and antibiofilm agent against Pseudomonas aeruginosa strains, demonstrating to be an extremely promising approach to the development of new antimicrobial systems.
Antibacterial activities of Ag-NPs have received much attention due to their effective killing and cost-effectiveness. Biosynthesis is an attractive and eco-friendly method to produce silver nanoparticles (Ag-NPs). Ag-NPs are considered a promising tool to overcome the emergence of multi-drug resistant bacteria. In this study, bio-synthesis of Ag-NPs was attempted using plant extracts of peppermint. Characterization of Ag-NPs was achieved by UV-visible spectrophotometer and TEM. Monodispersed Ag-NPs were obtained with different sizes ranged from 6 to 88 nm. Antibacterial activities of Ag-NPs against pathogenic bacteria were evaluated using disc diffusion method. Our results indicated that Gram positive bacteria were more susceptible than Gram negative. The current study offers a cost-effective and eco-friendly method for biosynthesis of potent bactericidal Ag-NPs and their use against human pathogenic bacteria.
In the present study, antibacterial activity of silver nanoparticles synthesized from stem of Tinospora cordifolia were analysed against multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn patients. As Pseudomonas aeruginosa is a scourge of hospital burn units and its emergence as multidrug-resistant strains is a major problem in the control of nosocomial infections. Therefore, we tried to establish a combination of medicinal values of Tinospora cordifolia and nanotechnology possibly with the field of medicine for the development of antibacterial agents against these MDR strains.The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Energy Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy. Transmission Electron Microscopy and X-Ray Diffraction have revealed the size of silver nanoparticles 9 ± 36 nm and 12.49 nm respectively. Further antibacterial activity of silver nanoparticles prepared from Tinospora cordifolia against multidrug resistant strains was determined by agar well diffusion assay and Minimum Inhibitory Concentration (MIC) was estimated by qualitative experimentation by resazurin based micro broth dilution method. All experiments were done in triplicate. The silver nanoparticles of stem of Tinospora cordifolia showed the zone of inhibition ranges from 10 ± 0.58 to 21 ± 0.25mm. The MIC of AgNPs from stem extract was found to be 6.25 to 200 µg/ml against Pseudomonas aeruginosa strains. Silver nanoparticles from Tinospora cordifolia possess very good antibacterial activity which makes them a potent source of antibacterial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.