Exposure to ultraviolet (UV) radiation causes harmful effects on the skin, such as inflammatory states and photoaging, which depend strictly on the form, amount, and intensity of UV radiation and the type of individual exposed. Fortunately, the skin is endowed with a number of endogenous antioxidants and enzymes crucial in its response to UV radiation damage. However, the aging process and environmental stress can deprive the epidermis of its endogenous antioxidants. Therefore, natural exogenous antioxidants may be able to reduce the severity of UV-induced skin damage and aging. Several plant foods constitute a natural source of various antioxidants. These include gallic acid and phloretin, used in this work. Specifically, polymeric microspheres, useful for the delivery of phloretin, were made from gallic acid, a molecule that has a singular chemical structure with two different functional groups, carboxylic and hydroxyl, capable of providing polymerizable derivatives after esterification. Phloretin is a dihydrochalcone that possesses many biological and pharmacological properties, such as potent antioxidant activity in free radical removal, inhibition of lipid peroxidation, and antiproliferative effects. The obtained particles were characterized by Fourier transform infrared spectroscopy. Antioxidant activity, swelling behavior, phloretin loading efficiency, and transdermal release were also evaluated. The results obtained indicate that the micrometer-sized particles effectively swell, and release the phloretin encapsulated in them within 24 h, and possess antioxidant efficacy comparable to that of free phloretin solution. Therefore, such microspheres could be a viable strategy for the transdermal release of phloretin and subsequent protection from UV-induced skin damage.