. Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration. Dental Materials, 32(7), 929-939. DOI: 10.1016929-939. DOI: 10. /j.dental.2016 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
General rightsCopyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.•You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal
Take down policyIf you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
AbstractObjectives: Eugenol has been used in dentistry due to its ability to inhibit the growth of a range of microorganisms, including facultative anaerobes commonly isolated from infected root canals. The aim of this study was to evaluate the antibacterial activity of the experimental composites containing eugenyl methacrylate monomer (EgMA), a polymeric derivative of eugenol, against a range of oral bacteria, commonly associated with failure of coronal and endodontic restorations. In vitro composite behaviour and wettability were also studied in conjunction with their antibacterial activity.