Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background. The spread of highly resistant strains of Klebsiella pneumoniae in the departments of purulent orthopedics determines the need for constant monitoring of the sensitivity of bacteria to antibacterial drugs. Aim. To monitor the resistance of K. pneumoniae bacteria isolated from patients with chronic osteomyelitis to antibacterial drugs. Material and methods. The resistance profiles of 663 clinical strains of K. pneumoniae isolated from wounds and fistulas of 294 patients with chronic osteomyelitis who were treated in the purulent department of the Federal State Budgetary Institution National Medical Research Center for Traumatology and Orthopedics named after G.A. Ilizarov in the period 20162021 to eight drugs: cefazolin, cefotaxime, cefepime, imipenem, meropenem, amikacin, gentamicin, piperacillin + tazobactam were analyzed. The analysis of the results was statistically processed using the software AtteStat, version 13.0. Data are presented as a percentage (%) of the total number of strains isolated during the study period. Results. K. pneumoniae strains showed the greatest resistance to cephalosporin antibiotics and inhibitor-protected penicillins. The number of strains resistant to aminoglycosides decreased from 2016 to 2021. Imipenem had the highest activity against Klebsiella, the proportion of resistant strains did not exceed 48% over 6 years. Meropenem was active against Klebsiella over a 3-year period from 20162018 (the proportion of resistant isolates did not exceed 28.5%). Starting from 2019, the number of resistant strains increased, in 2021 their number was 63.9%. Among all the isolated strains of K. pneumoniae, the largest share fell on polydrug-resistant strains (89.6%). Conclusion. The monitoring of the resistance of K. pneumoniae strains to eight antibacterial drugs revealed a high incidence of multidrug-resistant strains, low efficacy of cephalosporin antibiotics and inhibitor-protected -lactam drugs, and an increase in resistance to carbapenems.
Background. The spread of highly resistant strains of Klebsiella pneumoniae in the departments of purulent orthopedics determines the need for constant monitoring of the sensitivity of bacteria to antibacterial drugs. Aim. To monitor the resistance of K. pneumoniae bacteria isolated from patients with chronic osteomyelitis to antibacterial drugs. Material and methods. The resistance profiles of 663 clinical strains of K. pneumoniae isolated from wounds and fistulas of 294 patients with chronic osteomyelitis who were treated in the purulent department of the Federal State Budgetary Institution National Medical Research Center for Traumatology and Orthopedics named after G.A. Ilizarov in the period 20162021 to eight drugs: cefazolin, cefotaxime, cefepime, imipenem, meropenem, amikacin, gentamicin, piperacillin + tazobactam were analyzed. The analysis of the results was statistically processed using the software AtteStat, version 13.0. Data are presented as a percentage (%) of the total number of strains isolated during the study period. Results. K. pneumoniae strains showed the greatest resistance to cephalosporin antibiotics and inhibitor-protected penicillins. The number of strains resistant to aminoglycosides decreased from 2016 to 2021. Imipenem had the highest activity against Klebsiella, the proportion of resistant strains did not exceed 48% over 6 years. Meropenem was active against Klebsiella over a 3-year period from 20162018 (the proportion of resistant isolates did not exceed 28.5%). Starting from 2019, the number of resistant strains increased, in 2021 their number was 63.9%. Among all the isolated strains of K. pneumoniae, the largest share fell on polydrug-resistant strains (89.6%). Conclusion. The monitoring of the resistance of K. pneumoniae strains to eight antibacterial drugs revealed a high incidence of multidrug-resistant strains, low efficacy of cephalosporin antibiotics and inhibitor-protected -lactam drugs, and an increase in resistance to carbapenems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.