Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract The cytotoxicity of cisplatin and cisplatin-DNA adduct formation in vitro and in vivo is clearly enhanced by hyperthermia. We investigated whether cytotoxicity and platinum-DNA adduct formation of two promising new third-generation platinum derivatives, lobaplatin [1,2-diamminomethylcyclobutane platinum(II) lactate] and oxaliplatin [oxalato-l,2-diaminocyclohexane platinum(II)], are also enhanced by hyperthermia. Cisplatin was used for comparison. SW 1573 cells were incubated with cisplatin, lobaplatin or oxaliplatin at different concentrations for 1 h at 37 ~ 41 ~ and 43~ The reproductive capacity of cells was determined by cloning experiments. Immunocytochemical detection of platinum-DNA adducts was performed with the rabbit antiserum NKI-A59. At 37~ cisplatin was the most cytotoxic, followed by oxaliplatin and lobaplatin. Hyperthermia clearly enhanced the cytotoxicity of cisplatin, lobaplatin and oxaliplatin. There was no further increase in cytotoxicity at 43~ compared to 41~ for cisplatin and oxaliplatin. A further increase in cytotoxicity at 43~ was observed for lobaplatin. At 43~ thermal enhancement was higher for lobaplatin than for oxaliplatin, with the reverse pattern at 41~ For both drugs, thermal enhancement of cytotoxicity was lower than observed for cisplatin. Immunocytochemical detection of platinum-DNA adducts was feasible for all the drugs. Adduct formation was enhanced at 43~ for cisplatin, lobaplatin and oxaliplatin with a relative increase of 410%, 170% and 180%. These results seem to confirm that an increase in platinum-DNA adduct formation is involved in the in vitro thermal enhancement of cytotoxicity. The observed thermal enhancement of cytotoxicity of lobaplatin and oxaliplatin in vitro warrants further in vivo investigations.