Dengue virus infection can lead to life-threatening dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) in patients. Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks associated with DHF/DSS patients. However, the mechanisms that cause pathology in DHF/DSS patients are still unclear. Because conversion of plasminogen (Plg) to plasmin (Plm) is the first step in the activation of fibrinolysis, Abs against Plg found in DHF/DSS patients may be important. Therefore, to investigate the specificity, function, and possible origin of these Abs, we generated several Plg cross-reactive mAbs from DENV-immunized mice. An IgG mAb, 6H11, which recognizes an epitope associated with a dengue envelope protein, demonstrated a high level of cross-reactivity with Plg. The 6H11 Ab was further characterized with regard to its effect on Plg activation. Using Plm-specific chromogenic substrate S-2251, we found that mAb 6H11 demonstrated serine protease activity and could convert Plg directly to Plm. The serine protease activity of mAb 6H11 was further confirmed using serine protease chromogenic substrate S-2288. In addition, we found several Plg cross-reactive mAbs that could enhance urokinase-induced Plg activation. Lastly, mAb 6H11 could induce Plm activity and increase the level of D-dimer (a fibrin degradation product) in both human and mouse platelet-poor plasma. Taken together, these data suggest DENV-induced Plg cross-reactive Abs may enhance Plg conversion to Plm, which would be expected to contribute to hyperfibrinolysis in DHF/DSS patients.