The transcription factor E2F has been implicated in cell cycle control by virtue of its association with cyclins, cyclin-dependent kinases, and pRb-related tumor suppressor gene products. Eggs and embryos from the frog Xenopus laevis have been used to investigate the characteristics of E2F-like molecules in the Xenopus cell cycle and throughout early development. We find multiple E2F species in Xenopus eggs, at least one of which is modified by phosphorylation. The vast majority of E2F remains in the free form throughout the very early embryonic cell cycle, and it also remains predominantly free until some time after the mid-blastula transition, the onset of zygotic transcription. At this time, E2F complexes significantly to pRb but not to cdk2, although cdk2 binding is found in tissue culture cells from a very advanced stage in embryogenesis. This suggests that the complexing of E2F to cyclins, cyclin-dependent kinases, and tumor suppressor gene products may be controlled separately in early Xenopus development. Thus, the association of E2F with other molecules may not result solely from processes affecting cell cycle progression but may also reflect developmental and differentiation cues.