Transcription through tandemly arranged nucleosomes was studied to determine the frequency at which the nucleosomes would disrupt and cause displacement of the associated histones to a competitor DNA. In order to more effectively preserve topological effects, the template that was used in the in vitro transcription system was a large covalently, closed circular plasmid (8.9 kb). The plasmid contained two promoters for T7 RNA polymerase, each separated by 4.4 kb, and transcription was done in the presence of topoisomerase I at physiological ionic strength. Nucleosome disruption was observed at an approximate frequency of 1 in 4 nucleosomes such that after several rounds of transcription on the plasmid 80% of the nucleosomes were disrupted. Unexpectedly, all four histones were found associated with the RNA rather than the competitor DNA. The histones bound the competitor DNA only after removal of the RNA by RNase A treatment. By analyzing the topological state of the competitor DNA, it was observed that the majority of the histones that were displaced from the RNA were able to re-form nucleosomes. Additional experiments were done to determine the reasons for the preferential binding of histones to the newly synthesized RNA. It was found that the large molecular weight RNA binds histones with an approximate 100-fold greater affinity relative to DNA when at physiological ionic strength. Within the cell, this high-affinity binding would be expected to require cellular mechanisms to regulate the interaction of RNA with histones. The relatively high frequency of displacement of all four histones during transcription is higher than what is observed in vivo and suggests that additional factors are needed to regulate this displacement. These observations are discussed and compared with previous studies that have examined the process of transcription through nucleosomes.