Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken together, our results confirm the importance of diffusive transport in the generation of whole brain distribution profiles after infusion into the cerebrospinal fluid, although convective transport in the perivascular spaces of cerebral blood vessels was also evident. Our quantitative in vivo diffusion measurements may allow for more accurate prediction of IgG brain distribution after intrathecal or intracerebroventricular infusion into the cerebrospinal fluid across different species, facilitating the evaluation of both new and existing strategies for CNS immunotherapy.