SUMMARYGroup B streptococci (GBS ) are an important cause of neonatal sepsis, pneumonia and meningitis. In the early phase of infection, macrophages and polymorphonuclear cells (PMN ) are the first immune cells that interact with GBS. In this in vitro study, to gain insight into GBS-macrophage interaction in the absence of type-specific antibodies, we examined the features of GBS survival in thioglycollate-elicited murine peritoneal macrophages and the effect of GBS on the protein kinase C (PKC )-dependent transduction pathway. Our results demonstrate that type Ia GBS, strain 090 (GBS-Ia) and type III GBS strain COH 31r/s (GBS-III ), after in vitro phagocytosis survive and persist intracellularly in macrophages for up to 24 and 48 hr, respectively. However, macrophage activation by interferon-c (IFN-c) and lipopolysaccharide from Escherichia coli (LPS ) caused a significant reduction in the time of intracellular persistence. Macrophage activation by IFN-c and LPS seems to be a multifactorial event involving multiple intracellular signal pathways also including PKC. Since PKC is one of the components in the signal network leading to macrophage activation and an important target for several intracellular micro-organisms, we wondered whether PKC could have a role in intracellular GBS survival. Both PKC depletion by treatment with phorbol 12-myristate 13-acetate (PMA) for 18 hr and PKC inhibition by Calphostin C rendered macrophages more permissive for the intracellular GBS survival. Furthermore, GBSinfected macrophages were unable to respond to PMA and LPS, activators of PKC, by inducing antimicrobial activity. The ability of GBS to impair PKC-dependent cell signalling was also demonstrated by the reduced c-fos gene expression in GBS-infected macrophages with respect to control macrophages, after LPS stimulation. In conclusion, our results indicate that GBS survive in macrophages and impairment of PKC signal transduction contributes to their intracellular survival.
INTRODUCTIONcorrelates with the susceptibility or resistance of neonates to GBS infection.15,16 Group B streptococci (GBS ) are the major cause of pneuThe discovery that macrophages can phagocytose GBS in monia, sepsis and meningitis in neonates and a serious cause the absence of immune serum by C3-dependent binding17 and of mortality or morbidity in immunocompromised adults.1,2 C3-independent binding using complement receptor type three The main virulence factor of GBS is thought to be the capsular (CR3)18 suggests that there is also a potential role for antibodypolysaccharide because of its antiphagocytic properties.3,4 In independent mechanisms in resistance to GBS infection. resistance to GBS infection, a central role is played by antiHowever, the recent demonstration that type III GBS phagobodies to the type-specific capsular polysaccharide and complecytosed by a macrophage-like line J774 in the absence of typement which potentiate in vitro phagocytosis and GBS killing specific antibodies survived within its host cell,19 seems to by phagocytic cells...