Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals.Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.Dengue fever (DF), the most prevalent arthropod-borne viral illness in humans, is caused by dengue virus (DENV). The four serotypes of DENV are transmitted to humans primarily by the mosquitoes Aedes aegypti and Aedes albopictus. DENV is a member of the Flaviviridae family and is related to the viruses that cause yellow fever and the Japanese, St. Louis, and West Nile encephalitides (8). Infection by DENV causes a spectrum of clinical disease, ranging from an acute, debilitating, selflimited febrile illness (DF) to a life-threatening hemorrhagic and capillary leak syndrome (dengue hemorrhagic fever/dengue shock syndrome). At present, no approved antiviral treatment or vaccine is available, and therapy is supportive in nature. DENV causes an estimated 25 to 100 million cases of DF and 250,000 cases of dengue hemorrhagic fever per year worldwide, with 2.5 billion people at risk for infection (27,48).DENV is an enveloped virus with a single-stranded, positivesense RNA genome (11). The 10.7-kilobase genome is translated as a single polyprotein, which is then cleaved into three structural proteins (C, prM/M, and E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) by virus-and host-encoded proteases. The 500-Å DENV mature virion has a well-organized outer protein she...