The immunogenicity and protective capacity of Streptococcus pneumoniae 6B capsular polysaccharide (PS)-derived synthetic phosphate-containing disaccharide (Rha-ribitol-P-), trisaccharide (ribitol-P-Gal-Glc-), and tetrasaccharide (Rha-ribitol-P-Gal-Glc-)-protein conjugates in rabbits and mice were studied. In rabbits, all saccharides conjugated to keyhole limpet hemocyanin (KLH) evoked high levels of pneumococcal (Pn) type 6B antibodies that facilitated type-specific phagocytosis. Unlike the disaccharide rabbit antisera, tri-and tetrasaccharide rabbit antisera also reacted with 6A PS in an enzyme-linked immunosorbent assay (ELISA) and promoted phagocytosis of 6A pneumococci. All these rabbit antisera passively protected mice against a Pn 6B challenge. The disaccharide conjugate-induced antiserum, however, failed to protect mice against a 6A challenge. In mice, phagocytic and protective anti-Pn 6B antibodies were only induced by the tetrasaccharide conjugate and not by PS 6B or PS 6B-protein conjugates. These antibodies did not cross-react with 6A PS in ELISA and were unable to phagocytize 6A pneumococci. In conclusion, the disaccharide and tetrasaccharide conjugates already contain epitopes capable of inducing 6B-specific, fully protective antibodies in rabbits and mice, respectively.