Our capacity to learn movement sequences is fundamental to our ability to interact with the environment. Although different brain networks have been linked with different stages of learning, there is little evidence for how these networks change across learning. We used functional magnetic resonance imaging to identify the specific contributions of the cerebellum and primary motor cortex (M1) during early learning, consolidation, and retention of a motor sequence task. Performance was separated into two components: accuracy (the more explicit, rapidly learned, stimulus-response association component) and synchronization (the more procedural, slowly learned component). The network of brain regions active during early learning was dominated by the cerebellum, premotor cortex, basal ganglia, presupplementary motor area, and supplementary motor area as predicted by existing models. Across days of learning, as performance improved, global decreases were found in the majority of these regions. Importantly, within the context of these global decreases, we found specific regions of the left M1 and right cerebellar VIIIA/VIIB that were positively correlated with improvements in synchronization performance. Improvements in accuracy were correlated with increases in hippocampus, BA 9/10, and the putamen. Thus, the two behavioral measures, accuracy and synchrony, were found to be related to two different sets of brain regions-suggesting that these networks optimize different components of learning. In addition, M1 activity early on day 1 was shown to be predictive of the degree of consolidation on day 2. Finally, functional connectivity between M1 and cerebellum in late learning points to their interaction as a mechanism underlying the long-term representation and expression of a well learned skill.