The frequently observed de-endothelialization of venous coronary bypass grafts prepared using standard methods exposes subendothelial prothrombotic cells to blood components, thus endangering patients by inducing acute thromboembolic infarction or long-term proliferative stenosis. Our aim was to gain deeper histological and physiological insight into these relations. An intricate network of subendothelial cells, characterized by histological features specific for true pericytes, was detected even in healthy vessels and forms, coupled to the luminal endothelium, a second leaflet of the macrovascular intima. These cells, and particularly those in the venous intima, express enormous concentrations of tissue factor and can recruit additional amounts of up to the 25-fold concentration within 1 h during preincubation with serum (intimal pericytes of venous origin activate 30.71 ± 4.07 pmol coagulation factor x·min−1·10−6 cells; n = 15). Moreover, decoupled from the endothelium, they proliferate rapidly (generation time, 15 ± 2.1 h, n = 8). Central regions of atherosclerotic plaques, as well as of those of restenosed areas of coronary vein grafts, consist almost completely of these cells. In stark contrast with the prothrombogenicity of the intimal pericytes, intact luminal endothelium recruits high concentrations of thrombomodulin (CD 141) specifically within its intercellular junctions, activates Protein C rapidly (42 ± 5.1 pmol/min·106 venous endothelial cells at thrombin saturation; n = 15), can thus actively prevent coagulatory processes, and never expresses histologically detectable and functionally active tissue factor. Given this strongly prothrombotic potential of the intimal pericytes and their overshooting growth behavior in endothelium-denuded vascular regions, they may play important roles in the development of atherosclerosis, thrombosis, and saphenous vein graft disease.