Although microRNAs (miRNAs) have been intensively studied in cardiac fibrosis, their roles in drug-mediated anti-fibrotic therapy are still unknown. Previously, Pioglitazone attenuated cardiac fibrosis and increased miR-711 experimentally. We aimed to explore the role and mechanism of miR-711 in pioglitazone-treated myocardial infarction in rats. Our results showed that pioglitazone significantly reduced collagen-I levels and increased miR-711 expression in myocardial infarction heart. Pioglitazone increased the expression of miR-711 in cardiac fibroblasts, and overexpression of miR-711 suppressed collagen-I levels in angiotensin II (Ang II)-treated or untreated cells. Transfection with antagomir-711 correspondingly abolished the pioglitazone-induced reduction in collagen-I levels. Bioinformatics analysis identified SP1, which directly promotes collagen-I synthesis, as the putative target of miR-711. This was confirmed by luciferase assay and western blot analysis. Additionally, increased SP1 expression was attenuated by pioglitazone in myocardial infarction heart. Furthermore, transfection of antagomir-711 attenuated pioglitazone-reduced SP1 expression in cardiac fibroblasts with or without Ang II stimulation. We conclude that pioglitazone up-regulated miR-711 to reduce collagen-I levels in rats with myocardial infarction. The miR-711-SP1-collagen-I pathway may be involved in the anti-fibrotic effects of pioglitazone. Our findings may provide new strategies for miRNA-based anti-fibrotic drug research.
pioglitazone, miR-711, cardiac fibrosis
Citation:Zhao N, Yu H Y, Yu H T, et al. miRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction.