We report results of crystal structure analyses of calcium‐doped lanthanum manganites, La1−xCaxMnO3, obtained by mechanosynthesis. The calcium to lanthanum ratio x was varied from 0 to 1 at increments of 0.1, allowing us to study changes in crystal structure with different degrees of calcium substitution, from LaMnO3 (x=0) to CaMnO3 (x=1). Metallic oxide precursors, Mn2O3, La2O3, and CaO, were mixed in stoichiometric proportions. The powder mixture was milled using a shaker mixer/mill. X‐ray powder diffraction was used to monitor the phase transformation as a function of the milling time. Rietveld refinement was used to structurally characterize the manganites. The results show that it is possible to obtain calcium‐doped lanthanum manganite by mechanosynthesis using a weight ratio of balls to powder of 12:1. After 4.5 h of milling time, the synthesis is completed; the time is independent of the calcium‐doping level. However, increase of the Ca2+ content leads to a monotonic decrease of the orthorhombicity factor b/a for calcium to lanthanum ratios between 0.2 and 0.8. When the doped level is increased, a peak displacement is observed, which is associated with a distortion of the crystal structure and variation in the cell parameter. All the manganites crystallized with the same O‐type orthorhombic perovskite structure as pure LaMnO3, with a space group Pnma. The structural distortion in the orthorhombic lattice with the Ca2+ content is associated with a partial oxidation of the manganese ion, the increment on vacancies, and the cationic substitution.