Owing to the specific porous structure which could provide additional passage channel for some molecules, metal organic frameworks are attractive candidates for enhancing permeability and selectivity of membranes in pervaporation, reverse osmosis, and gas separation. In this experiment, Ag@UiO-66-NH2 was introduced into polyamide separation layer by interfacial polymerization of triethylenetetramine and 1,3,5-benzenetricarboxylic acid chloride for nanofiltration. The results indicated that Ag@UiO-66-NH2 nanoparticles did endow the membranes with rapid diffusion pathways for water molecules. When the content of Ag@UiO-66-NH2 was 0.03 g, the prepared membrane (NF-Ag-3) showed high flux about 47.3 L·m-2·h-1 at 0.6 MPa, which is about 2-fold higher than that of polyamide membrane without Ag@UiO-66-NH2, while the MgSO4 rejection rate remained about 87.4%. The membrane also showed excellent antifouling properties, and the water flux recovery ratio was 95.6% after filtration BSA solution. When it was applied for 50 mg/L bisphenol A removal, the rejection rate reached 94.6%, and the flux is about 49.1 L·m-2·h-1. Moreover, Ag particles on UiO-66-NH2 rendered the membrane with good inhibition for Escherichia coli. The antibacterial rate of the membranes is above 95% when the loading of Ag@UiO-66-NH2 is more than 0.03 g.