The development of a prophylactic vaccine against hepatitis C virus (HCV) has become an important medical priority, because 3-4 million new HCV infections are thought to occur each year worldwide. Hepatitis B virus (HBV) is another major human pathogen, but infections with this virus can be prevented with a safe, efficient vaccine, based on the remarkable ability of the envelope protein (S) of this virus to self-assemble into highly immunogenic subviral particles. Chimeric HBV-HCV envelope proteins in which the N-terminal transmembrane domain of S was replaced with the transmembrane domain of the HCV envelope proteins (E1 or E2) were efficiently coassembled with the wild-type HBV S protein into subviral particles. These chimeric particles presented the full-length E1 and E2 proteins from a genotype 1a virus in an appropriate conformation for formation of the E1-E2 heterodimer. Produced in stably transduced Chinese hamster ovary cells and used to immunize New Zealand rabbits, these particles induced a strong specific antibody (Ab) response against the HCV and HBV envelope proteins in immunized animals. Sera containing anti-E1 or anti-E2 Abs elicited by these particles neutralized infections with HCV pseudoparticles and cellcultured viruses derived from different heterologous 1a, 1b, 2a, and 3 strains. Moreover, the anti-hepatitis B surface response induced by these chimeric particles was equivalent to the response induced by a commercial HBV vaccine. Conclusions: Our results provide support for approaches based on the development of bivalent HBV-HCV prophylactic vaccine candidates potentially able to prevent initial infection with either of these two hepatotropic viruses. (HEPATOLOGY 2013;57:1303-1313 C hronic hepatitis C virus (HCV) infection is a major public health problem affecting more than 170 million people worldwide. 1 Three to four million new infections are thought to occur each year and a prevalence of 10%-30% has been reported in countries in which this virus is highly endemic, including Egypt, which has the highest HCV prevalence in the world. 2 HCV infection is one of the leading causes of chronic liver disease; it is associated with a high risk of cirrhosis and hepatocellular carcinoma and is the major indication for liver transplantation in industrialized countries. Provided it is detected sufficiently early, progression to severe disease can be prevented by treatment with a combination of pegylated interferon (IFN)-a and ribavirin, in some cases supplemented with recently approved nonstructural protein 3/4A protease inhibitors. 3 This triple therapy yields a sustained virologic response, but is very expensive and may be associated with drug-drug interactions and severe side effects. Therefore, the development of a prophylactic vaccine against HCV is a major medical priority. However, the development of such a vaccine