Background
Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients’ lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety of regulatory functions in myocardial fibrosis, but whether electroacupuncture can inhibit myocardial fibrosis by regulating lncRNA has rarely been reported.
Methods
In this study, we constructed myocardial fibrosis rat models using isoproterenol (ISO) and treated rats with electroacupuncture at PC6 point and non-point as control. Hematoxylin–eosin, Masson and Sirius Red staining were performed to assess the pathological changes and collagen deposition. The expression of fibrosis-related markers in rat myocardial tissue were detected by RT-qPCR and Western blot. Miat, an important long non-coding RNA, was selected to study the regulation of myocardial fibrosis by electroacupuncture at the transcriptional and post-transcriptional levels. In post-transcriptional level, we explored the myocardial fibrosis regulation effect of Miat on the sponge effect of miR-133a-3p. At the transcriptional level, we studied the formation of heterodimer PPARG–RXRA complex and promotion of the TGF-β1 transcription.
Results
Miat was overexpressed by ISO injection in rats. We found that Miat can play a dual regulatory role in myocardial fibrosis. Miat can sponge miR-133a-3p in an Ago2-dependent manner, reduce the binding of miR-133a-3p target to the 3ʹUTR region of CTGF mRNA and improve the protein expression level of CTGF. In addition, it can also directly bind with PPARG protein, inhibit the formation of heterodimer PPARG–RXRA complex and then promote the transcription of TGF-β1. Electroacupuncture at PC6 point, but not at non-points, can reduce the expression of Miat, thus inhibiting the expression of CTGF and TGF-β1 and inhibiting myocardial fibrosis.
Conclusion
We revealed that electroacupuncture at PC6 point can inhibit the process of myocardial fibrosis by reducing the expression of lncRNA Miat, which is a potential therapeutic method for myocardial fibrosis.