Background
Dental impressions are essential for accurately capturing the detailed anatomy of teeth and surrounding oral structures. However, these impressions often become contaminated with saliva and blood, making proper disinfection necessary. The application of chemical disinfectants has been associated with negative side effects, leading to suboptimal disinfection practices in clinical settings.
Objective
The purpose of this study was to evaluate the effectiveness of chlorogenic acid (CA) as a disinfectant for alginate impression materials, the impact of CA disinfection on the physical properties and dimensional accuracy of alginate impressions was also investigated.
Methods
The physical properties of alginate impression materials, such as elastic recovery, strain-in-compression, initial setting time, and fluidity, were assessed after mixing the alginate impression materials with three different concentrations of CA solution (10 mg/mL, 15 mg/mL, 20 mg/mL). To evaluate the antimicrobial effect of CA, alginate impressions mixed with a 10 mg/mL CA solution and impressions mixed with distilled water (control group) were contaminated with four types of microorganism: Escherichia coli, Staphylococcus aureus, Candida albicans, and Streptococcus pneumoniae. Following a five-minute incubation period, a CA solution at a concentration of either 50 mg/mL, 55 mg/mL, or 60 mg/mL was sprayed on the samples for disinfection. Samples were collected at different time intervals (10 min, 20 min, 30 min) and cultured to determine the number of colony-forming units (CFU/mL), providing insight into the antimicrobial efficacy of these CA solutions. The dimensional accuracy of alginate impressions was assessed in three groups: one with alginate impressions mixed with distilled water, another with alginate impressions sterilized with available chlorine (2,000 mg/L) mixed with distilled water, and the last group consisting of alginate impressions mixed with 10 mg/mL CA solution and sprayed with 60 mg/mL CA solution. Both the standard model and the plaster model underwent 3D scanning, and the data were processed and compared by software. The root mean square (RMS) was used as a parameter to evaluate the deviation between models.
Results
All alginate impression materials mixed with either 10 mg/mL, 15 mg/mL, or 20 mg/mL concentrations of CA solution met the ISO 21563 standard for elastic recovery, strain-in-compression, and fluidity. However, only the material mixed with a concentration of 10 mg/mL CA had an initial setting time within the range specified by the T-6505 Japanese industrial standard. The application of CA solution by mixing or spraying showed significant antimicrobial effects on Staphylococcus aureus, Escherichia coli, Candida albicans, and Streptococcus pneumoniae. There was no significant difference in the dimensional accuracy of the alginate impressions between the group of the CA solution applied, the blank group, or the chlorine intervention group.