Defined as a pneumonia occurring after more than 48 hours of mechanical ventilation via an endotracheal tube, ventilator-associated pneumonia results from biofilm formation on the indwelling tube, seeding the patient’s lower airways with pathogenic microbes such asPseudomonas aeruginosa, Klebsiella pneumoniae,andCandida albicans.Currently there is a lack of accuratein vitromodels of ventilator-associated pneumonia development. This greatly limits our understanding of how the in-host environment alters pathogen physiology and the efficacy of ventilator-associated pneumonia prevention or treatment strategies. Here, we showcase a reproducible model that simulates biofilm formation of these pathogens in a host-mimicking environment, and demonstrate that the biofilm matrix produced differs from that observed in standard laboratory growth medium. In our model, pathogens are grown on endotracheal tube segments in the presence of a novel synthetic ventilator airway mucus (SVAM) medium that simulates the in-host environment. Matrix-degrading enzymes and cryo-SEM were employed to characterise the system in terms of biofilm matrix composition and structure, as compared to standard laboratory growth medium. As seen in patients, the biofilms of ventilator-associated pneumonia pathogens in our model either required very high concentrations of antimicrobials for eradication, or could not be eradicated. However, combining matrix-degrading enzymes with antimicrobials greatly improved biofilm eradication of all pathogens. Ourin vitroendotracheal tube (IVETT) model informs on fundamental microbiology in the ventilator-associated pneumonia context, and has broad applicability as a screening platform for antibiofilm measures including the use of matrix-degrading enzymes as antimicrobial adjuvants.ImportanceThe incidence of ventilator-associated pneumonia in mechanically ventilated patients is between 5-40%, increasing to 50-80% in patients suffering from coronavirus disease 2019 (COVID-19). The mortality rate of ventilator-associated pneumonia patients can reach 45%. Treatment of the endotracheal tube biofilms that cause ventilator-associated pneumonia is extremely challenging, with causative organisms able to persist in endotracheal tube biofilm despite appropriate antimicrobial treatment in 56% of ventilator-associated pneumonia patients. Flawed antimicrobial susceptibility testing often means that ventilator-associated pneumonia pathogens are insufficiently treated, resulting in patients experiencing ventilator-associated pneumonia recurrence. Here we present anin vitroendotracheal tube biofilm model that recapitulates key aspects of endotracheal tube biofilms, including dense biofilm growth and elevated antimicrobial tolerance. Thus our biofilm model can be used as a ventilated airway simulating environment, aiding the development of anti-ventilator-associated pneumonia therapies and antimicrobial endotracheal tubes that can one day improve the clinical outcomes of mechanically ventilated patients.