Nanocomposite thermoelectrics can exhibit both reduced thermal conductivity and enhanced electrical conductivity beyond single-phase materials; accordingly, they have become the new material paradigm to achieve viable thermoelectric efficiencies. New synthesis techniques are needed to further enhance their properties. A novel technique, designed to synthesize nanoprecipitates within a well-sintered single-phase polycrystalline matrix, is reported. The technique, attrition-enhanced nanocomposite synthesis (AENS), comprises three stages: (1) Synthesis of cage-like crystal structures with metastable interstitials, followed by (2) severe plastic deformation (SPD), and finally (3) rapid sintering with concomitant interstitial precipitation. The efficacy of this technique is demonstrated in this work. Filled cage-like * Prof. Dr. A. Weidenkaff