Hematopoietic stem cell transplantation (HSCT) is a medical procedure used to treat malignant and non-malignant diseases of the blood, as well as solid tumors. The outcome of HSCT is influenced both by clinical and genetic factors. Compatibility between the recipient and the donor in terms of HLA is a wellknown limiting factor for the success of allogeneic HSCT.1 In addition, genes other than those of the HLA system, in particular those that are highly polymorphic, have been proposed as potential factors affecting the success of this therapy. T ransforming growth factor β-1, encoded by the TGFB1 gene, is a cytokine that plays a central role in many physiological and pathogenic processes. We have sequenced TGFB1 regulatory region and assigned allelic genotypes in a large cohort of hematopoietic stem cell transplantation patients and donors. In this study, we analyzed 522 unrelated donor-patient pairs and examined the combined effect of all the common polymorphisms in this genomic region. In univariate analysis, we found that patients carrying a specific allele, 'p001', showed significantly reduced overall survival (5-year overall survival 30.7% for p001/p001 patients vs. 41.6% others; P=0.032) and increased non-relapse mortality (1-year nonrelapse mortality: 39.0% vs. 25.4%; P=0.039) after transplantation. In multivariate analysis, the presence of a p001/p001 genotype in patients was confirmed as an independent factor for reduced overall survival [hazard ratio=1.53 (1.04-2.24); P=0.031], and increased non-relapse mortality [hazard ratio=1.73 (1.06-2.83); P=0.030]. In functional experiments we found a trend towards a higher percentage of surface transforming growth factor β-1-positive regulatory T cells after activation when the cells had a p001 allele (P=0.07). Higher or lower production of transforming growth factor β-1 in the inflammatory context of hematopoietic stem cell transplantation may influence the development of complications in these patients. Findings indicate that TGFB1 genotype could potentially be of use as a prognostic factor in hematopoietic stem cell transplantation risk assessment algorithms.
©2016 Ferrata Storti Foundation