Transdermal nonsteroidal anti-inflammatory drugs (NSAIDs) are actively used for mild and moderate pain syndrome, muscle contusions and sprains, sports injuries, and the widest range of musculoskeletal diseases. The transdermal administration of NSAIDs aims to create sufficiently high drug concentrations in the lesion focus, provided that the side effects associated with its systemic action are maximally reduced.Objective: to comparatively simulate the effects of transdermal NSAIDs.Material and methods. Chemoreactome profiling of six NSAIDs (meloxicam, diclofenac, ibuprofen, ketoprofen, nimesulide, and dexketoprofen) was performed. The pharmacological capabilities of molecules were analyzed within the framework of a chemoreactome methodology, by comparing the chemical structure of the studied molecule with those of millions of other molecules, the pharmacological properties of which had already been studied in experimental and clinical studies. Training the artificial intelligence algorithms based on the big data available in in the databases PubChem/PHARMGKB, HMDB, STRING, and others was done with multi-level training quality control in the cross validation framework according to the combinatorial theory of solvability and the theory of feature value classification.Results and discussion. Meloxicam versus other NSAIDs accumulates primarily in the muscles and skin and, to a much lesser extent, in heart tissues, lymphocytes, gonads, and cartilage. This drug showed the greatest dose-dependent decongestant effect in the model of edema induced by croton oil. Analysis of the systemic effects of NSAIDs indicated that meloxicam might affect the metabolism of vitamins A, D, PP, and B6 to a lesser extent than other NSAIDs.Conclusion. The chemoreactomе analysis has demonstrated that meloxicam as a gel causing minimal side effects can be used effectively and long.