Using light-emitting diode (LED) in plant production optimizes growth with higher energy efficiency, reduces carbon footprint and resource consumption, and promotes more sustainable agriculture. However, the plants’ growth characteristics and biochemical composition may vary depending on the light’s wavelength, spectrum, and intensity. Therefore, LEDs as a light source have become a promising choice for improving cultivation efficiency, as they can modulate the spectrum to meet the needs of plants. Pereskia aculeata is a plant species from the cactus family with high protein, vitamins, minerals, and fiber. The objective of this study was to evaluate the effect of LED lighting on the cultivation of P. aculeata and its influence on biometric color and physicochemical aspects. Two treatments were carried out without the addition of artificial light: one inside the greenhouse (C-ins) and the other outside the greenhouse (C-out), and four treatments with LEDs in different spectral bands: monochromatic red (600–700 nm) (Red), monochromatic blue (400–490 nm) (Blue), white (400–700 nm) (White), and blue–red (1:1) (Blue–Red). The biometric characteristics and the color of the leaves collected from the different treatments were evaluated. After this, the leaves were dried, ground, and evaluated. The physicochemical and thermal characteristics, bioactive compounds, and antioxidant activity of the leaves from each treatment were described. The biometric characteristics were intensified with red LED, and the color of the leaves tended toward green. The dried yield was around 50%, except for C-out treatment. Regarding nutritional characteristics, the highest protein (29.68 g/100 g), fiber (34.44 g/100 g), ash (20.28 g/100 g), and lipid (3.44 g/100 g) contents were obtained in the treatment with red light. The red treatment also intensified the content of chlorophyll a (28.27 µg/L) and total carotenoids (5.88 µg/g). The blue treatment intensified the concentration of minerals and provided greater thermal stability. Regarding bioactive properties, the cultivation of P. aculeata inside the greenhouse favored the concentration of phenolic compounds and a greater antioxidant capacity. Therefore, the quality of light for P. aculeata demonstrates that the length of red and blue light corroborates the development of the plant through the wavelength absorbed by the leaves, favoring its characteristics and planting in closed environments.