The aim of the present study was to evaluate the total phenolic and lipid content, fatty acids profiles and in vitro antioxidant activities of aqueous and solvent extracts of the red seaweed Asparagopsis taxiformis, through six different investigations. The present study demonstrated that phenol contents (mg gallic acid/g dry weight) were highest in the aqueous and methanolic extracts, followed by the ethanolic, hydroethanolic and hydromethanolic extracts. The lowest phenol contents were identified in the three remaining extracts: Butanolic, petroleum ether and acetone extracts. Furthermore, the total lipid content of the algae powder amounted to 2.85% of dry weight. The fatty acid methyl ester profiles analysed by gas-liquid chromatography represented indicated that fatty acids comprised 91.0±0.3% of total algae lipids. The saturated to unsaturated fatty acid contents amounted to 23.2±0.1 and 67.9±0.4% respectively. C13:0 (tridecanoate), C15:0 (pentadecanoate) and C17:0 (heptadecanoate) represented 47.4% of the total saturated fatty acids. Notably, the two most abundant unsaturated fatty acids, C15:1 (pentadecenoate) and C18:2 (octadecadienoate) represented 13.4 and 11.4% respectively, of the total unsaturated fatty acid content. Furthermore, the results of the antioxidant screening performed at 1.0 mg/ml, revealed that aqueous and methanolic extracts exhibited higher inhibition against superoxide and nitric oxide radicals and excellent radical scavenging activity [with half maximal inhibitory concentration (IC50) values 5.1 and 15.0 µg/ml, respectively], demonstrating improved antioxidant behavior when compared with standard ascorbic acid (which has an IC50 value of 3.7 µg/ml). Scavenging activity of the aqueous and methanolic extracts exhibited a strong peroxidation inhibition against linoleic acid emulsion system at a concentration of 300 µg/ml in comparison to the butylated hydroxyltoluene. Although all the studied extracts exhibited ferric reducing power, the aqueous and methanolic extracts had greater hydrogen donating ability. By contrast, hydromethanolic, ethanolic, hydroethanolic, butanolic, acetone and petroleum ether extracts exhibited weak antioxidant behavior. The antioxidant activity of potent seaweed species identified in the current study means that as well as being used as a functional food, they may be developed as novel pharmaceutical compounds and may be used as anti-ageing agents.