Natural compounds that have the potential to act as antimicrobials and antitumors are a constant search in the field of pharmacotherapy. Eragrostis plana NEES (Poaceae) is a grass with high allelopathic potential. Allelopathy is associated with compounds generated in the primary and secondary metabolism of the plant, which act to protect it from phytopathogens. Tabernaemontana catharinensis A DC (Apocynaceae), a tree in which its leaves and bark are used for the preparation of extracts and infusions that have anti-inflammatory and antinociceptive effects, is attributed to its phytochemical constitution. The objective of this study was to elucidate the phytochemical constitution, the antibacterial potential, the toxicity against immune system cells, hemolytic potential, and antitumor effect of methanolic extracts of E. plana and T. catharinensis. The phytochemical investigation was carried out using the UHPLC-QTOF MS equipment. The antibacterial activity was tested using the broth microdilution plate assay, against Gram-negative and Gram-positive strains, and cytotoxicity assays were performed on human peripheral blood mononuclear cells (PBMC) and in vitro hemolysis. Antitumor activity was performed against the colon cancer cell line (CT26). Results were expressed as mean and standard deviation and analyzed by ANOVA. p<0.05 was considered significant. More than 19 possible phytochemical constituents were identified for each plant, with emphasis on phenolic compounds (acids: vanillic, caffeic, and quinic) and alkaloids (alstovenine, rhyncophylline, amezepine, voacangine, and coronaridine). Both extracts showed antibacterial activity at concentrations below 500 µg/mL and were able to decrease the viability of CT26 at concentrations below 2000 µg/mL, without showing cytotoxic effect on PBMCs and in vitro hemolysis at the highest concentration tested. This is the first report of the activity of E. plana and T. catharinensis extracts against colon cancer cell line (CT26). Studies should be carried out to verify possible molecular targets involved in the antitumor effect in vivo.