The aim of the current study is to assess the phytochemical contents, antifungal activity, and cytotoxicity characteristics of an ethanolic extract derived from the entire Torilis arvensis plant. High-performance liquid chromatography examination of the extract revealed that the primary phenolic components were benzoic, o-coumaric, and vanillic acids with concentrations of 259.1, 220.4, and 111.3 µg/g of extract, respectively. The highest flavonoids were catechol (117.9 µg/g) and kaempferol (108.7 µg/g). The extract is notable for its high concentration of long-chain saturated and unsaturated fatty acids, as well as its presence of 17 gas chromatography-mass spectrometry bioactive chemicals. Three soil-borne pathogenic fungi, Rhizoctonia solani, Fusarium solani, and Fusarium oxysporum, were molecularly identified and assessed for the antifungal activity of the extract. The extract showed the highest growth inhibition against R. solani, F. oxysporum, and F. solani at 300 µg/mL, with inhibition rates of 88.9, 71.5, and 67.8%, respectively. T. arvensis treatments were generally non-toxic after proceeding with cytotoxicity assay on the onion root tip cells, with no chromosomal abnormalities detected even at the highest concentration (300 µg/mL). These findings highlight the potential of T. arvensis extract as a safe and effective antifungal agent with a rich phytochemical profile.