This study was conducted to enhance the viability and alleviate the oxidative stress response using MO for sea bass during live transport. Six experimental groups were designed, and the effects of the physiological responses of MO were evaluated in comparison with MS-222 and eugenol. The physiological stress levels, proprotein convertase subtilisin/kexin type 9 (PCSK-9), antioxidant enzyme activities, and kidney parameters of blood serum were determined. It was found that cortisol level, glucose (Glu), lactic acid (LD), heat shock proteins (HSPs), catalase (CAT), myeloperoxidase (MPO), glutathione peroxidase (GSH-Px), uric acid (UA), and urea nitrogen (BUN) in the MO-treated samples were lower than that of the control (133.72 ng/L); however, the total antioxidant capacity (T-AOC) was higher after 72 h of the simulated live transport. The ability to resist oxidative stress increased along with the increase in the MO concentration in the water during live transport, which was similar to the results of MS-222 and eugenol treatment. In conclusion, MO, acting as a kind of novel sedative and anesthetic, can be used to improve the oxidative system and survival rate during live transport. The results of this study provide a reference for enhancing animal welfare and anti-oxidative stress ability, reducing mortality and the stress response during live fish transport.